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Simple and precise measurements of 
fibre volume and void fractions in metal 
matrix composite materials 

JACQUES E. SCHOUTENS 
MMCIA C, Kaman Tempo, 816 State Street, Santa Barbara, California 93102, USA 

A method for determining the fibre volume fraction, Vf, and the void fraction, Vg, in a 
metal matrix composite (MMC) material is described. These quantities are determined 
from specimen weight measurements in air and in a liquid using a laboratory balance. 
For a material without voids, Vf can be determined with an uncertainty less than 0.5% 
with a balance precision of 0.01%. By making the same measurements before and after 
etching away the matrix, using the same balance precision, Vf and Vg can be determined 
to an uncertainty of about 3 and 6%, respectively. It is also shown theoretically that by 
indenting a specimen containing no fibres and only a uniform distribution of small voids, 
the void fraction can also be determined from weight measurements before and after 
indentation. 

1. Introduction 
Two of the most important parameters that influ- 
ence the mechanical properties of metal matrix 
composite (MMC) materials are the fibre volume 
fraction and the void fraction. The fibre volume 
fraction is the most important parameter because 
it determines the strength and stiffness properties 
of an MMC composite. The void fraction is a 
consequence of material processing. It is a param- 
eter often needed for understanding material pro- 
cessing and the development of improvements. 

The effects of voids upon the longitudinal 
strength properties of unidirectional continuous 
fibre reinforced MMC are often negligible [1] if 
the voids are uniformly distributed throughout the 
materials, are small in individual volume, and 
represent less than about 2 to 3% of the total vol- 
ume. This follows from the fact that, for a suf- 
ficiently large value of fibre fraction, the continu- 
ous fibres assume the bulk of the loading on the 
MMC. Transverse properties may be affected to a 
greater extent. However, the presence of voids in 
discontinuous or whisker reinforced MMC 
materials, even in small fractions, can significantly 
reduce the material strength. Typically, a 2% void 
fraction in a 30 volume per cent (vol%) SiC/A1 
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will reduce the tensile yield strength by about 50%. 
The same void fraction in a unidirectionally con- 
tinuous fibre reinforced MMC will result in a 
reduction in longitudinal tensile yield strength of 
less than 1% [1]. 

Consequently, from the above discussion and 
the need to ascertain ever more precisely the 
strength properties of MMC materials, there is a 
continuing requirement for measuring these param- 
eters with precision. The methods for measuring 
fibre volume fraction can involve exceedingly com- 
plex equipment such as an image analysing tele- 
vision scanner and computer [2] with a precision 
no better than 1 to 2%. The measurement of void 
fraction is generally accomplished from metallur- 
gical sections using statistical analysis. Both 
methods require the destruction of the sample and 
are time consuming and often expensive. 

Whittenberger et at. [3] have investigated the 
determination of fibre fraction in resin reinforced 
composites. They show that the volume fraction is 
directly relatable to the lamina thickness even for 
fibre orientation as large as 45 degrees from the 
normal to a cut section. By a simple calculation, it 
can be shown that the method yields the rule of 
mixtures. 
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This paper discusses the simple non-destructive 
method of measuring the fibre volume fraction 
using a precision balance. The method is ideal for 
continuous fibre reinforced MMC where the void 
fraction is unimportant from the standpoint of 
strength. The analysis is extended to include the 
measurement of void fraction. However, in this 
case it is necessary to etch away part of the matrix 
material. This paper also discusses the expected 
precision attainable and the requirement for such 
precision, and exemplifies the analyses with 
numerical results f o r  boron/aluminum and 
graphite/aluminum. 

2. Comments on precision balance 
measurements 

Recently, Pratten [4] reviewed the measurement 
of the density of small samples and showed that 
such measurements can be carried out to a high 
degree of precision. However, he does not make 
specific reference to MMC. Density measurements 
are of three types [4]: ultra-precise density 
measurements of large objects carried out by stan- 
dards laboratories; approximate density measure- 
ments, to within + 1%, of very small objects; and 
the precise measurement of the density of small 
samples (1 to a few hundred grammes). 

The interest in this paper lies primarily in the 
precise measurement of absolute density values by 
weighing samples in air and in a liquid. Sample 
weights considered are of the order of about 
100 g or less. 

The experimenter using the technique of 
measurements in air and in liquid must be aware 
of three sources of errors common to immersion 
techniques [4]: the adherence of air bubbles to 
the sample surfaces, often invisible to the unaided 
eye, causing an artificial increase in volume and 
buoyancy; the effects of surface tension on the 
wire supporting the immersed specimen; and tem- 
perature fluctuations. The immersion fluid should 
have a low surface tension (good wetting proper- 
ties), a low vapour pressure, and a high density. 
Frequently used liquids are water or diethyl 
phthalate. The liquid used is usually distilled 
before use to remove impurities and trapped gases. 

3. Analysis 
The density of an MMC material containing a vol- 
ume fraction of fibre, Vt, and matrix, Vm, in 
addition to a fraction of voids, Vg, is given by 

Pe = PmVm + pfVf  + pgVg (1) 
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where p is the density and the subscripts refer to 
matrix, fibre, and gas, respectively. Other than 
these three phases, no other material is assumed to 
be present in significant amounts to affect the 
composite density. From volume conservation 

V ~ + V m + V g  = 1 (2) 

which, when used in Equation 1, gives 

Pe = Pm( 1 -- Vf) + pfVf  + (pg --Pm)Vg. (3) 

However, pg '~ Pm 
reduces to 

Pe ----- P r o (  1 

Equation 4 shows 

and pg ~ pf; hence, Equation 3 

-- VO + pfV~ -- pmVg. (4) 

that the density of an MMC 
material is reduced by a quantity Pm Vg due to the 
presence of voids containing gases. The manner in 
which these voids come about is of no concern 
here. The fact that these gases may be at very high 
pressure is not significant to this analysis. Tsai and 
Hahn [5] show an expression for the composite 
density based on the mass fraction of the constitu- 
ents. 

In hydrostatic weighing of a specimen, the 
specimen is weighed in air, Wa, and in a liquid, W I- 

The weight in air is 

Wa = g(Me -- PaVe), (5) 

and the weight in a liquid is 

W 1 = g(M e -- plve) (6) 

where g is the acceleration due to gravity, Pa and 
Pl are the air and liquid densities, respectively, and 
Me and ve are the true composite mass and volume 
of the specimen, respectively. Since Me = pert,  

Equations 5 and 6 give 

Wap 1 -- Wlp a (7) 
P ~  = Wa-- Wl' 

where Peru stands for the measured composite den- 
sity. The densities given by Equations 4 and 7 are 
equal, thus relating the fractions of the MMC 
constituents to measurements. 

Equation 4 can be solved for V~ and Vg, giving 
the following relations: 

1 
V~ = ~ [p=~ - pro(1 - V~)] (8) 

Pf - -  Pm 
and 

Vg = 1 Pempm ( l p ' I V f  - -  ~-~] . (9) 

These equations show that either Vf or Vg must be 



measured independently of the other. It is shown 
below that the same specimen can be used to 
measure Vf and Vg independently. 

3.1. Case of zero void fraction 
In the absence of voids, Equation 8 or 9 reduces to 

with a = 1 -  Of/Pro. Thus to obtain the fibre vol- 
ume fraction, it is necessary to measure only the 
composite weight in both air and liquid and use 
Equation 7 to determine Peru. The value of a is 
known from the matrix and fibre properties. 
Because of the insignificance of the term WlPa, 
Equation 7 reduces to 

WaPI 
Peru -- Wa _ 14/1. (11) 

The uncertainty in Vf is calculated directly [6] 
from 

l a v~ '~ ~ . 

AVg = J-Z-=-/Ap~ (12) 
\OPera/ 

where AVf and APe m are the uncertainties in the 
volume fraction and the composite density, respec- 
tively. Using Equation 10 to calculate the partial 
derivative, dividing both sides of Equation 12 by 
Equation 10, and taking the square root results in 

AVf = Pm _ 1 (13) 
Vf Pem 

Bowman and Schoonover [7] have achieved a 
precision of 0.0001% in determining the density 
of a 10g silicon crystal using a mechanical 
balance with a 1 microgram sensitivity and water 
as the liquid. It is expected that under routine con- 
ditions in a metallurgical laboratory or a quality 
control laboratory, the weight of a specimen of 
MMC material can be determined to a precision 
of between 0.01 and 0.001%. It can be shown (see 
Appendix) that Apem/Pe m c a n  be determined to 
a precision of 0.06 to 0.006%, respectively, using 
the expected precision in weighing. Assuming the 
more conservative value, Equation 13 becomes 

AVf Pm 
V~ = 0.06 -- 1 (14) 

where AVf/Vf is in per cent. The value of pc m is 
obtained from Equation 7. The uncertainty in the 
volume fraction was estimated for boron/ 
aluminium and graphite/aluminium as a function 

of the volume fraction using Equation 14. The 
following values were used: p m = 2 . 7 g c m  -3, 
pf = 2.47gcm -3 (boron), and pf = 1.66gcm -3 
(graphite), and Equation 1 with Vg = 0 was used 
to compute Pe for each case. The results are shown 
in Fig. 1 as iAVf/Vfl against Vf. For some MMC 
systems where Pf~Pm giving peru>pro , the 
inverse term in Equation 14 will be negative. 

Fig. 1 shows that the uncertainty in the volume 
fraction of fibre in boron/aluminium or graphite/ 
aluminium is less than 0.5% using a standard 
hydrostatic weighing technique with a precision of 
0.01%. This figure also shows that the uncertainty 
in V~ depends upon the fibre volume fraction 
through the term (Pm/Pem--1) -1. This term 
causes the value of IAgf/gf[ to decrease with 
increasing Vf, as shown in the figure. 

3.2. Case of non-zero void fraction 
The above analysis relates the void fraction and 
the fibre volume fraction as shown in either 
Equation 8 or 9. These two quantities cannot be 
separated with only one measurement. However, 
two sequential experiments can be carried out 
with the same specimen. The first experiment con- 
sists in determining W a and 1t/1, thereby yielding 
the composite density. The second experiment 
consists in etching away part of the specimen 
matrix (approximately 25 to 75%) leaving the 
fibres intact. The etched specimen is again weighed 
in air and in the liquid giving the new values W a 
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FIBRE VOLUME FRACTION (%) 
Figure 1 Uncertainty in the fibre volume fraction as a 
function of fibre volume fraction for boron/aluminium 
and graphite/aluminium calculated from Equations 14 
and 1 with Vg = 0. 
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and W~, respectively, from which the density Peru 
is calculated from either Equation 7 or 1 I. In this 
process, the void fraction remains essentially 
unchanged. For purposes of this analysis, it is 
assumed that etching does not change the void 
fraction significantly. This assumption implies that 
the voids are generall,y small and uniformly distri- 
buted throughout the matrix. 

For the first measurement before etching, 
Equation 9 is 

Vg = 1--Pe"~m--aV~ (15) 
Pra 

where Pera is defined by Equation 11 and ~ as for 
Equation 10 and Ve is the fibre volume fraction 
before etching. After etching, Equation 9 becomes 

? 

Vg = 1--Pem--c~V~ (16) 
Pm 

where V~ is the fibre volume fraction after etching 
away part of the matrix, 

WaPl (17) r - -  

Pore w -w; 

and Vg in Equations 15 and 16 is unchanged 
according to the above assumption. 

The specimen has been etched to remove a frac- 
tion n of matrix material so that the new matrix 
volume fraction is 

V m = n V  m (18) 

where 0 < n <~ 1. From Equation 2, the new fibre 
volume fraction is 

V~ = 1 - - V ~ - - V g  = 1 - - n V m - - V ~ .  (19) 

using Equation 18. Using Equation 2 again in 
Equation 19 gives 

V~ = ( 1 - - n ) ( a - -  vg) + nV~ (20) 

which relates to measured values of Vf and the 
unknown void fraction. Using Equation 20 in 
Equation 16 after some rearranging gives 

t 

Pem 
Vf = /3(1 -- Vg) - - - -  (21) 

Pm 
where 

Substituting Equation 15 into Equation 21 
gives 

t 

Pem - -  Peru V, = (23) 
Pro(1  - -  t3a) 

TAB L E I Values of ~ and ~ for a number of metal matrix 
composite material systems 

Composite pf Pm ~ ~* a~ 
(gcm -3) (gcm -3) 

B/A1 2.47 
Gr/A1 1.66 
B/Ti 2.47 
Gr/Mg 1.66 
SiC/A1 3.20 
A12OJA1 3.98 

2.7 0.085 3.745 0.318 
2.7 0.385 2.845 1.095 
4.51 0.452 2.644 1.195 
1.74 0.046 3.862 0.178 
2.7 --0.185 4.555--0.843 
2.7 -- 0.474 5.422 -- 2.570 

* # was calculated from Equation 22 using n = 0.25. 

which yields the fibre volume fraction in the 
presence of an unknown void fraction from two 
independent sets of measurements from the same 
specimen. All quantities in Equation 23 are either 

t 

known (p~, Pra) or measured (Peru, Peru, n). Note 
that the quantity n must also be known. An 
expression is derived below to yield that quantity 
from measured weights of the specimen before and 
after etching. Table I shows values of relevant 
parameters for a number of MMC systems. 

It is necessary to determine the value o fn  with 
reasonable precision so that/3 and, hence, Ve and 
Vg can be determined. The weight of the specimen 
in air before and after etching gives the values Wa 
and Wa, respectively. Their difference gives the 
mass of matrix lost in etching, or 

W a -- W" = PmAVm (24) 
t 

where AV m = v m -- v m, the matrix volume change. 
From Equation 18, v ~ = n V m  so that AV m =  
( 1 -  n)Vm. Substituting this value in Equation 24 
and solving for n gives 

1 
n = 1-- (W a -  Wa) (25) 

VmPm 

where Vm is the unknown matrix volume before 
etching. Now, v is the total specimen volume so 
that vm = vVm. To estimate V m from measure- 
ments, Equations 2 and 10 can be combined, set- 
ting Vg = 0 to yield 

1(1 Peru t (26) V m - -  1 - -  - 
Pin/ 

where Peru is the composite density before etch- 
ing. The assumption Vg = 0 in deriving Equation 
26 may not be too good. It is shown below that 
the uncertainty in n affects the uncertainty 
AV~/Ve when the matrix contains voids. Substitut- 
ing Equation 26 in Equation 25, recalling that 

960 



v~ = vV=, gives 

n = l  
w,-w  

[ 1(1 petal ] (27) 
Yam 1- -~ \  Pm]J 

where all quantities are determined directly from 
measurements or tabulated data. The volume v is 
simply the product of the three specimen dimen- 
sions. 

The method presented above applies to any 
fibre reinforced composite metal. In the case of 
short fibre or whisker or platelets, the fibres that 
were present in the etched matrix must be care- 
fully collected and weighed in air and in the liquid 
with the remaining unetched composite. 

3.3. Determination of void fraction with 
Vf known 

If Vf is known from an independent measurement, 
then,Equation 21 can be solved for Vg to yield 

1 (v, + (28) v ,  = 

where the quantities on the right-hand side of 
Equation 28 are obtained from two sets of inde- 
pendent measurements. 

The void fraction can be determined by another 
experimental method if the fibre volume fraction 
is known from other measurements. Instead of 
etching the specimen, indentations are made into 
the matrix totalling a volume Av. The specimen 
is weighed in air and in liquid before and after 
indentation to obtain the values Wa, I4'1, and W~'. 
If the specimen matrix contains voids, indent- 
ations will reduce these voids to zero at the 
indentations. Equation 9 can be written in terms 
of actual material volumes, or 

vg _ ] Peru Vf . . . . .  o~ - -  ( 2 9 )  
V Pm V 

where vg and vf are the actual void and fibre 
volumes and Peru is obtained from weight measure- 
ments before indentation. After indentation, the 
reduced volume results in a buoyancy change, thus 
altering the material density measurement to 

" ~ W a  (30) 
Peru = Pl Wa__W i 

and W~' is related to the volume change, Av, by 

W;' = K(v -- Av) (31) 

where K = g ( P e m - - P ] ) .  Thus, Equation 29 has a 

second form 

vg _ 1 Peru vf 
. . . . .  a - - .  ( 3 2 )  
V Pm V 

Multiplying Equations 29 and 32 through by v and 
adding gives 

vg + v~ = [2 -- 030 +/3,)]v -- (1 --Pl)Av -- 2avf 

(33) 
where 

= wO (34) 

W, 1 
t 

Since vg = vg - -  Avg, after division by v, Equation 
33 becomes 

AVg = ( 1 - ~ 1 ) @  v -  [2--03o +/3,)] + 2oWl. 

(36) 

The ratio Av/v can be found from Equation 31 to 
be 

Av W~' 
- 1 ( 3 7 )  v w, 

so that Equation 36 becomes 

AVg = A + 2aVf (38) 

where 

/ W" \ 1 1 _ A = ( 1 - - ~ )  (J - -~ - l )  [2--03o +/31)1(39) 

where all quantities follow density from measure- 
ments. Vg = V~ + AVg so that using Equations 32 
and 38, recalling that v~/v = V~ and vf/v= Vf, 
there results 

(1 1 Vg = - P m  ] + A + aVf (40) 

thus giving the void fraction directly from four 
sets of weight measurements (Wa, W1; W,, W~') and 
and independent measurement of Vf. 

Note that Equation 40 also gives the void frac- 
tion in a material containing no fibres (Vf = 0). 
Thus, 

ct 

Vglvf= o = 1 P e m + A .  (41) 
Pm 

When Vf r 0 and Vg --* 0, WI" -~ W1 since any 
specimen indentation causes material displacement 
without a volume change (densification is neg- 
lected here). Then, A31 ~/3o and Equation 38 
reduces to 

961 



1 
V f =  - (1--/30) (42) 

a 

which is identical to Equation 10. 
The total volume of indentation does not need 

to be large. It can be shown [ 1 ] that this volume 
is related to the precision of the hydrostatic weigh- 
ing by the expression Av = pv, where p is the pre- 
cision. In the method discussed in this paper, p 
is approximately 0.01%. 

3.4. Error analysis for non-zero void 
fractior~ 

Equations lY, 21, 23, and 27 can be represented 
by a functional relationship of the form f-= f(xx, 
x2, x 3 , . . . ) ,  where x 1, x2, xa , .  �9 are measurement 
parameters or parameters that can be calculated 
from measurements. In estimating the errors for 
the values of Vt, V m, Vg and n, cross-correlated 
terms are neglected and, therefore, covariant 
uncertainties are not considered. Consequently, 
the uncertainty in this functional relationship can 
be written as 

Af2= ' t x4 

{ iTAx2 
+ t xd + . . . .  (43) 

Applying this expression to Equations 21 and 
33 yields the following: 

v--F = + v . , . . .  s \v . j j  

+ (1 -- V-~7 ( A ~ 7  (44) 
\ Peru / 

and 

/3-- 3- = + . (45) 

Using the values shown in Table I for a and/3, an 
average value of a//3 "~ 0.04 with a standard devi- 
ation of 0.1. Therefore, (1 + a/13) 2 ~  1 so that 
Equation 45 reduces to z2~//3"An/n. From 
Equation 15, it follows that 

A 2 

V~ q ( 1  tOem] 

and from Equation 27 

+ ~  
t- i f /  

(46) 
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An 2 [(1, t2[AWal 2 
.2 = lo l _  WdWd \ wa ] 

lP--~m) ] " (47) 

Equations 46 and 47 can be combined to eliminate 
the uncertainty in the void fraction, resulting in 

V~ 1 --Aa2V~ 

+A(1 + ~V~)2 ( ~ )  2 

where 

+ e(Aq~=]21 
\Peru ] J 

(48) 

l +  1 p'em] 2 
A = ~ m l  (49) 

O = (1--V~ f .  (50) 

4. Discussion of numerical results 
The uncertainties for an MMC material containing 
voids were calculated using the Equations of 
Section 3.4. The numerical parameters for boron/ 
aluminium used in these calculations are: Ve = 0.5, 
Pm= 2.7g cm-3 (aluminium), p~ = 2.47gcm -3 
(boron), Peru = 2.59gcm -a, Peru' = 2.65g cm-3, 
W a = 1 0 0 g ,  W a = 6 1 g  (calculated for this 
example), Vg "~ 0.02, and n = 0.25. These values 
give /3 = 3.75 and a = 0.085 so that a//3 = 0.02. 
Based on reported [4] measurement precision, 
AW,/W a = AW'dw" = 0.0001, Avlv = 0.001, 

r # 

AOem/Oem = A P e m / O e m -  0 .0006  (see Appendix). 
Using these values in Equations 47, 48, and 46 
yields, respectively: 

An 
- -  = 0.0225 
n 

Av~ 
= 0.023 

v~ 

zxv, = 0 0 5 8  
v~ 

These results show that the uncertainty in the 
fibre volume fraction is approximately 2% for this 
case compared to an uncertainty less than 0.5% 
for the case of zero void. The dominant uncer- 
tainty in An/n is the fourth term in Equation 47 



so that, for practical purposes, Equation 47 
reduces to 

A n  10 /Apem" ~ (51) 

In Equation 48, the term in front of the bracket is 
of  order unity. The uncertainty is dominated by 
the first and third term in the bracket so that 
Equation 48 can be simplified to 

(1 - . ( 5 2 )  

+  Por. / 
The uncertainty in Equation 46 cannot be simpli- 
fied as both terms are of the same order. 

It can also be seen from the results of the 
numerical evaluation that An/n and AV~/V~ are 
the same magnitude. This is illustrated in Fig. 2. 
The uncertainties in AVf/Vr, An/n, and AVg/Vg 
are plotted as a function of the precision of weight 
measurements. The differences between An/n and 
AVf/V~ are negligibly small. The uncertainty in 
the void fraction measurement is a factor of about 
2.5 greater than for the fibre volume fraction. 
From Fig. 2, it can be noted that to achieve a 1% 
uncertainty in Vf and Vg, the balance must have 
a precision of 0.004 and 0.0015%, respectively. 

5, Conclusions 
A method for determining the fibre volume frac- 
tion, V~, and the void fraction, Vg, in an MMC 
material has been described. These quantities 
are determined from specimen weight measure- 

ments in air and in a liquid using a laboratory 
balance. For a material without voids, o n e  

weight measurement in air and in a liquid is 
sufficient to determine V~. With a balance 
having a precision of 0.01%, V~ can be deter- 
mined with an uncertainty of 0.5% or less. This 
is somewhat better than the 1 to 2% achievable 
with an image analysing system. 

In the presence of voids, V~ and Vg can be 
determined by two sets of weight measurements as 
before: one set of measurements on the intact 
specimen, the second set after a fraction (0.25 to 
0.75) of  the matrix has been etched away. With a 
balance having a precision of 0.01%, V~ and Vg 
can be determined with an uncertainty of less than 
3 and 6% , respectively. The uncertainties in Vf 
and Vg are nearly linearly related to balance 
precision, rising steeply with decreased precision. 

It has also been shown that the method was 
theoretically feasible for determining the void frac- 
tion in materials not containing fibres. Two sets 
of weight measurements would be needed, o n e  

with the specimen intact, the other after indent- 
ations have been made in the specimen surface. 
However, in this case, the balance precision 
required would have to be greater than 0.01%. 
The feasibility of this method has not been investi- 
gated. 
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Appendix 
The uncertainties in the material density obtained 
from weight measurements are related to weight 
measurement uncertainties in the following man- 
ner. Equation 17 is 

W~p~ 
pore - ( g l )  

- Wl  

and the uncertainty in the density, negle:ting 
cross-correlation terms, is obtained from 

(OPcml2AWa 2 + AWl 2. (A2) 

Carrying out the partial derivatives using Equation 
A1, substituting the result into Equation A2, and 
dividing through by 2 P~,~ after some rearrangement 
gives 

- [[-w-S! + wl I t 
(A3) 

If  the weight in air and in water can be measured 
to the same uncertainty, then we can write 
A W a / W  a = AW1/W 1 = A W / W ,  where W is the speci- 
men measured weight. Then Equation A3 becomes 

Ao _ 2w# 
p2em (W a _ W1)2 , , (A4) 

In general, W 1 --~ 0.8W a is a good approximation so 
that 2W~/(W a --  I4,'1) 2 ~-- 32. Consequently, 
Equation A4 further reduces to 

Ape m AW 
- 5 . 6 6 -  (A5) 

Oem W' 

Therefore, for an uncertainty in the weight o f  
0.01%, the uncertainty in the density is 0.06%. 
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